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The submerged sphere as an absorber of wave power 
By M. A. SROKOSZ 

School of Mathematics, University Walk, Bristol, BS8 lTWt 

(Received 23 March 1979) 

A submerged sphere is considered to be absorbing power from an incident wave 
through an integrated mooring and power take-off system. It is shown that the power 
absorbed (as characterized by the absorption length) depends on the hydrodynamic 
proper-ties of the sphere; in particular on the added-mass and damping coefficients. 
These coefficients are determined and the results used to study the power absorption 
properties of the sphere. Curves are given showing the variation of the absorption 
length with wavenumber, for differing depths of submergence. 

1. Introduction 
In a paper in the Journal of Fluid Mechanics in 1976, Evans proposed a theory for 

the absorption of wave power by oscillating bodies. In  0 7 of his paper he considered the 
power absorption properties of a three-dimensional body with a vertical axis of 
symmetry, For such a body, constrained to move in only one mode, he proved the 
remarkable result that 

where lma, is the maximum absorption length1 and h the wavelength of the incident 
wave. Here ei = 2 for i = 1 , 3 and ei = 1 for i = 2 where i = 1 , 2 , 3  refer to sway, heave 
and roll motions respectively. This result shows that the maximum power absorbed is 
independent, of the size of the body and depends only on the wavelength of the incident 
wave and the mode of motion of the body. 

Evans applied his results to the particular case of a floating sphere, moving in heave. 
However, he was unable to take full advantage of the above result, in the following 
sense. Non-dimensionalizing the maximum absorption length with respect to the 
diameter, 2a, of the sphere gives 

lmax = ~ i h ( 2 7 ~ ) - ' ,  

Zmsr/'2~ = (2Ka)-1 ,  

where K = 2nh-1 is the wavenumber. For a good absorber lmax/2a must be greater 
than one; that is the power absorbed must be equivalent to the power in an incident 
wave whose crest length is greater than the diameter of the sphere. This clearly requires 
Ka to  be less than a half and thus the sphere must be tuned to non-dimensional wave- 
numbers K a  < +. For a floating sphere, Evans found that the natural buoyancy 
restoring force made it impossible to achieve this tuning (see Evans 1976, $7,  for 
details). 

In this paper a submerged sphere is considered to be absorbing power from an 

t Present address : Institute of Oceanographic Sciences, Wormley , Godalming, Eurrey. 
$ Absorption length = power absorbed by the body divided by the total power in an incident 

wave of unit frontage (see Evans 1976, $7).  
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incident wave. This enables the difficulties caused by the natural buoyancy restoring 
force, which acts on the floating sphere, to be overcome because a submerged sphere 
does not experience such a force acting upon it. An attempt is also made to model a 
realistic power take-off system for the sphere. The idea for this power take-off system 
is taken from Evans, Davis & Srokosz (1978), and is as follows. The sphere is moored 
by three neutrally-buoyant cables which reach down to housings situated on the sea 
bed. Each cable is wrapped round a spring-loaded cable drum at its lower end. The 
sphere is given a slight positive buoyancy so that the cables are in tension when the sea 
is calm. In  waves the sphere is forced to move and the cables wind onto and unwind 
from the cable drums in response to the motion of the sphere. Throughout the motion 
power is absorbed by power take-off mechanisms which are attached to the cable 
drums and which convert the motion into usable power. The system is modelled in this 
paper by linear dampers and springs which have a resistance to motion proportional 
to the rate of change of extension and the extension of the cables respectively. 

In  order to calculate the absorption length for the submerged sphere it is necessary 
to consider the equations of motion of the sphere when it is moving in response to an 
incident wave. The mooring and power take-off system allows the sphere to move in 
more than one mode. This results in an increased absorption length, as compared to 
the case when the sphere is constrained to move in only one mode. It is shown that the 
absorption length depends on the hydrodynamic properties of the sphere; in particular 
on the added-mass and damping coefficients. These calculations are presented in part 
(a),  $6 3-6, of this paper. In  5 6 curves for the absorption length of the submerged sphere 
are presented and discussed. Results are also given for a submerged sphere moored by 
only one cable. These are derived as a special case of the three cable system. 

In part ( b ) ,  $$7-11, of this paper the radiation problems for a heaving, surging and 
swaying submerged sphere are solved. The radiation problem is one in which there is no 
wave incident upon the sphere and the sphere is forced to oscillate in a given mode. The 
solutions to the radiation problems include the values of the added-mass and damping 
coefficients necessary to calculate the absorption length in part (a)  of this paper. The 
radiation problems are solved by using the multipole potentials derived by Thorne 
(1953); following the method used by Ursell(l950) to solve the problem of the scatter- 
ing of an incident wave by a submerged circular cylinder. Curves of the added-mass 
and damping coefficients are presented and discussed in $11, 

2. Formulation 
Cartesian co-ordinates (2, y, z )  are chosen such that y = 0 is the undisturbed free 

surface, with y measured vertically downwards. The sphere has radius a and its centre 
is at (0, h, 0) (see figure 1) with a/h < 1. Consider the motion of the submerged sphere 
in response to an incident wave. The usual assumptions of linearized water wave 
theory allow the introduction of a velocity potential @(x, y, z ;  t )  satisfying 

V2@ = 0 in the fluid, (2.1) 

the linearized free-surface condition 
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FIGURE 1. Co-ordinate system for the submerged sphere. 

and 
VO+O as y-tm. 

It is assumed that a small amplitude sinusoidal wave train, of frequency w,  is incident 
upon the sphere from a direction making an angle /I with the x axis. Under the con- 
straints of the mooring and power take-off system the sphere moves in response to the 
incident wave. Its motion may be represented by a linear combination of motions in 
surge, heave and sway modes, that is, by a linear combination of motions parallel to 
the x, y, z axes respectively. 

Let & ( t )  be the displacement of the sphere, in the j t h  mode from its equilibrium 
position. Here j = 1 relates to surge, j = 2 to heave and j = 3 to sway. The linearized 
condition of equal normal velocity of sphere and fluid applied on the equilibrium 

for (x, y, z )  on S, the surface of the sphere; where n = (nl, n2, n3) is the normal vector 
from the sphere into the fluid at the point (x, y, z ) .  

I t  is possible to eliminate the harmonic time dependence by writing 

and 

NOW the complex-valued time-independent potential $(x, y, z )  may be written as 
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FIGURE 2. Schematic layout of the three cable mooring and power take-off system. 

where A is the amplitude of the incident wave and $I is given by 

$I = exp ( iK(z  cos ,8 + z sinp) - Ky}, (2.8) 

(here K = d/g) .  The complex potential $ D  is the diffracted wave produced if the 
sphere is held fixed in the presence of the incident wave $ I .  The complex potential $i is 
the solution to the radiation problem in which the normal velocity Re(njeiwt} is 
prescribed on the sphere, corresponding to oscillations in one of the three modes. These 
radiation problems are considered in part (b) of this paper. 

Condition (2.4) is satisfied if 

(a)  The submerged sphere as a wave-power absorber 

3. Equations of motion of the sphere 
In  order to model the power take-off and mooring system of the sphere consider the 

situation shown in figure 2. The sphere is at the point 0 and is moored by three cables 
of length L; each inclined at  an angle a to the vertical and situated symmetrically 
around the sphere. Here a symmetrical mooring and power take-off systems is chosen 
in order to ensure that the power absorption characteristics of the sphere are inde- 
pendent of the direction of incidence of the incident wave. In  calm seas the system is in 
equilibrium. Thus the tension in the cables, To, is given by 

3T0 cos a + mg = +7ra3pg, (3.1) 

where m is the mass of the sphere and p the density of water. For the cables to be in 
tension (To > 0) the sphere must have positive buoyancy (i.e. m $7ra3p). The value 
m = 0.8(Q7ra3p) is used throughout the calculations in this paper. 

When the sphere moves in response to the incident wave it is displaced from its 
equilibrium position (0, h, 0) to (6 ( t ) ,  h+ LJt), Q(t)).  Each of the three cables OA, OB, 
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OC must therefore change in length. The power take-off system is modelled by linear 
springs and dampers which have a resistance to motion proportional to the extension 
and the rate of change of extension of the cables, respectively. In  order to preserve 
symmetry it is assumed that the spring and damper rates are the same for all three 
cables. Thus the tension in the cables OA, OB, OC, when the sphere is in motion is 
given by 

(3.2) I To, = To+k6A+d6A, 
ToB = T,+k8B+dfB, 
To, = To+k6C+d66, 

where k ,  d are the spring and damper rates; and SA, SB, 6C are the extensions of OA, 
OB, OC respectively. 

A simple calculation shows that 

6A = [(L sin a cosy - gl), + ( L  cos a - C.J2 + (L  sin a sin y - Q)”* - L, 
6B = [(Lsinasin ( n / 6 - y ) + l 3 +  ( L c o ~ a - ~ , ) ~ + ( L s i n a c o s ( n / 6 - y ) + ~ ~ ) ~ ] * -  L, 
6C = [ (L  sin a sin (n /6  + y )  + Cl), + ( L  cos a - c,), + (L  sin a cos (n/6 + y )  - [3)2]+ - L. 

Under the assumptions of linearized theory the displacements of the sphere from its 
equilibrium position will be small compared to the length of the cables; that is 

IQ(t)/LI < 1 for j = 1,2 ,3 .  

The above equations then give 

(3.3) i 
6A 1: - cl sin a cosy - 5, cosa- c3 sina cosy, 

6B 1: 1;1 sin a sin (n /6  - y )  - Q cos a + Q sin a cos (n/6 - y) ,  

6C N cl sin a sin ( n / 6  + y )  - 5, cos a - c3 sin a: cos (n /6  + y).  

Note that in order to derive these results the lengths of the cables have been assumed 
to be finite. Equation (2.3), however, indicates that the sphere is considered to be in 
infinitely deep water. Therefore to be strictly consistent the length L of the cables 
should be allowed to tend to infinity. This is not necessary as for this linear theory the 
extensions of the cables do not depend on L (see (3.3)). In  fact allowing L to tend to 
infinity ensures that the condition 1Cj(t)/LI < 1 is always satisfied for finite displace- 
ments &(t) .  

Without loss of generality, assume /3 = 0 (see figure 1); that is the waves are incident 
upon the sphere from x = +m. Thus, by symmetry, there are no hydrodynamic 
forces acting on the sphere in the z direction owing to the incident wave. Resolving the 
motion into components parallel to the x, y, z axes gives the following equations of 
motion, after the use of (3.1) and (3.2), 

dl = k[SA sin a cosy - SB sin a sin (n /6  - y )  - 6C sin a sin (n/6 + y ) ]  + 
d[iA sin a cosy - 8B sin a sin (n /6  - y )  - Sk sin a sin (n/6 + y)] + 
&l + 4 1, 

s’c COS a] + &2 + q2, 
n& = k[8A cosa + 6B cos a + 8C cos a] + d[ iA cos a + 8B cos a + 
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mP3 = k[6A sin a sin y - 6B sina cos ( ~ / 6  - y )  + 6C sin a cos (77/6 + y)] + 
d[6k sin a sin y - Sh sin a cos (7r/6 - y )  + S'C sin a cos (7r/6 + y ) ]  + 
8 3 .  

Here Kj is the exciting force acting on the sphere in the j t h  mode, due to the incident 
wave, when the sphere is held fixed. Fpj is the radiation force acting on the sphere in the 
j t h  mode owing to its own motion, in the absence of the incident wave. Note that there 
is no exciting force due to the incident wave acting parallel to the z-axis by symmetry. 
In general, €or a body moving in surge, heave and sway, ej may be written as 

3 

k =  1 
qj = - { a j k [ k + b j k [ k }  for j = 1,2 ,3 ,  (3.4) 

where ajk, bjk are the added-mass and damping coefficients. For a sphere, aj, = 0, 
b, = 0 whenever j + k by symmetry; that is motion in one mode does not produce 
hydrodynamic forces acting in other modes. Note also that Fej may be written as 

Fej = Re{Xjeiwt). (3.5) 

For further details of the form of Fpj and Kj see Newman (1976). 

tidying up, as 
Using (2.6) and (3.3)-(3.5), the equations of motions may be written, after some 

[ - (m + all) w2 + iwb,,] t1 = X, - $k sin2atl - giwd sin2 at,, 

[ - (m + az2) w2 + iwb,,] t, = X, - 3k cos2at2 - 3iwd cos2 at2, 

[ - (m + u33) w2 + iwb,,] t3 = - $k sin2at3 - giwd sin2at3. 

( 3 4  

(3.7) 

(3.8) 

As may have been deduced from the symmetry of the system, the motions in three 
mutually perpendicular directions are independent of one another, except for the 
dependence of all three equations on k, d and a. Equation (3.8) shows that t3 = 0; that 
is, there is no motion in the horizontal direction perpendicular to the line of incidence 
of the incident wave. In  the next section these results are used to consider the power 
absorption properties of the submerged sphere. 

4. Power absorption by the submerged sphere 

on the sphere by the fluid. That is 
The power P absorbed by the sphere is the mean rate at which work is being done 

= qw2d[sin2 a1 t112 + 2cos2al t 2 1 2 ] ,  

using g, = 0, (3.4)-(3.7) and (2.6). The absorption length 1 is now defined as the power 
absorbed divided by the mean energy-flux per unit length across a vertical plane 
normal to the wave direction. Thus 1 is given by 

1 = P/[(~@)-'N~~A~~I, 
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Newman [ 1962; equations (31) - (33) ]  proved that relations exist betwen the exciting 
forces Fei and the damping coefficients b j j .  Those may be written, on use of ( 3 4 ,  as 

where 
IXi12 = ei 2pg3~-31A12bij for j = 1 , 2 , 3 ,  (4 .2)  

2 for j = 1 , 3 ,  
8.. = * {  1 for j = 2. 

It follows, from (3.6), (3 .7) ,  (4 .1)  and (4 .2 ) ,  that the absorption length is given by 

48w2b11d sin2a 
= K-l ( [ 3 k  sin2 a - 2 ( m  + all) w2I2 + w2[3d sin2a + 2bl1l2 

) (4 .3 )  
1 2w2b2, d cos2 a 

+ [3k cos2a - (m + az2) w2I2 + w2[3d cos2a + b2,I2 ' 
Alternatively, write 1 as 

1 = K-l(ll + l z ) ,  (4 .4)  

(4 .5 )  

(4 .6 )  

where 

[3k sin2 a - 2 ( m  + all)  w2I2 + w2[3d sin2 a + 2b1,l2 I ' [3ksin2a- 2 ( m + a , , ) ~ ~ ] ~ + w ~ [ 3 d s i n ~ a -  2b1,l2 

[3k cos2 a - (m + az2) w2I2 + w2[3d cos2a - bZ2l2 
[3k cos2 a - (m + a22) w2I2 + w2[3d cos2 a + b2J2 

1 , = 2  1 -  

1. 
( 

I , =  ( 1 -  

and 

Note that the absorption length 1 depends on the values of the added mass and damping 
coefficients for the submerged sphere. These coefficients are determined in part ( b )  of 
this paper and are used in calculating the absorption length. 

In order to find the maximum absorption length, 1 must be maximized as a function 
of k, d for given w and a. Although this appears straightforward it is in fact difficult to 
maximise 2 analytically; therefore a numerical maximisation procedure was carried 
out by computer. Details of the maximization procedure are given in $ 6 .  From (3 .6 ) )  
(3.7) and ( 4 . 2 )  it  is possible to calculate the values lcl/Al and lc2/AI, which give the 
time-independent displacements of the sphere from its equilibrium position. They are 
non-dimensionalized with respect to the amplitude of the incident wave. Results for 
the displacements of the sphere and its absorption length are presented and discussed 
in $6.  

When 1 is written as the sum of two parts, (4 .4) - (4 .6) ,  i t  is clear that each part can be 
maximized separately, for a given w and a. Thus 1, = 2 when 

and 1, = 1 when 

In general, k, d cannot be chosen such that (4 .7 )  and (4 .8 )  hold simultaneously. It may 
therefore be deduced that the maximum absorption length I,,, < 3K- l .  If the power 
take-off systems in heave and surge were independent, that is, not through the system 
of cables modelled here, then it would be possible to obtain Z,,, = 3K- l .  

k = 2 ( m + a l l ) w 2 / 3 s i n 2 a ,  d = 2b1,/3sin2a, (4 .7 )  

k = (m+ az2) 0213 cos2a, d = b,,/3 cos2a. (4 .8 )  
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5. Special case of a single-cable mooring and power take-off system 
If a is set to zero in the above analysis then the following results are obtained 

2pg3w-3b2, 1 2 /I = [k, - (m + az2) w2I2 + w2(b2, + d l ) 2  ’ 
and 

(5 .3 )  

where k ,  = 3k and d ,  = 3d. These results clearly apply to the situation in which the 
power take-off and mooring for the sphere are provided by one vertical cable. Now 1 
may be maximized as a function of k ,  and d ,  to give 

when 
= K-l, 

k ,  = (m + az2) w2,  dl = b22. 

These results show that power is only extracted from the incident wave through the 
heaving motion of the sphere. The surge oscillations of the sphere are identical to those 
of a totally unconstrained sphere moving in response to an incident wave. The maxi- 
mum value of 1 is the same as that obtained by Evans (1976) for an axisymmetric 
body moving only in heave and absorbing energy from an incident wave. 

Calculations were carried out for this case of a single cable mooring and power take- 
off system and also the case of a three cable mooring and power take-off system. The 
results obtained are presented and discussed in the next section. 

6. Results and discussion for the absorption length of the sphere 
If k and d are chosen such that 1 = I,,, at w = wo, for a given 01, then k = k(wo),  

d = d(wo) ,  I,,, = Zmax(W0) all depend on wo. Substituting k(wo) ,  d (wo)  into (4.5) (or 
( 5 . 3 ) )  shows that 1 depends on w and wo and has the following properties: 

(6.1) 1 1 = Z(w, w0) where l(w0, w0) = Imax(W0) 

and Z(w,wo) < zmax(@). 

In this case the sphere is said to be ‘tuned’ to w = wo. Now, for a given wo, k(wo) and 
d(wo) need to be calculated and then the variation of Z(w, wo) with w may be studied. 

In  all the calculations below the mass of the sphere is taken to be 0.8 times the mass 
of the displaced fluid, that is 

This ensures that, when the sphere is in equilibrium, the cables are in tension (see ( 3 . 1 ) ) .  
The values of the added-mass and damping coefficients used in the calculations are 
taken from’the results of part ( b )  of this paper. 

For the sphere, with the three cable mooring and power take-off system, k ,  d and 
I, , ,  were determined for given values of a and wo by a numerical maximization pro- 
cedure applied to (4 .3 ) .  This involved setting k and d to some initial value and then the 

m = 0.8(%7~~~/1) .  
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0.5 1 .o 1.5 2.0 
Ka 

FIGURE 3. Non-dimensional absorption length 1/2a us. non-dimensional wavenumber Ka, for the 
submerged sphere with a single-cable power take-off system, with a/h = Q for different values of 
tuned wavenumber KO a. The dashed curve represents the non-dimensional maximum absorption 
length, Z-,/2a = +(Ka)-l. 

computer procedure found the maximum of the function nearest the initial values of 
k, d. The procedure also gave the values of k, d for which this maximum was achieved. 
For each value of wo two initial values of k, d were used; these were the values given by 
(4.7) and (4.8). This procedure was carried out for various values of the parameters 
a, alh and KO a ( = w t  a / g )  and in each case the maxima obtained from the two different 
initial values of k, d were compared. Two main features were apparent from the results. 
Firstly, it was found that, for certain combinations of the parameters, the numerical 
maximisation procedure gave the same value for and the same final values of 
k, d irrespective of which of the two initial values for k, d were used. I n  all cases I,,, 
was such that 2Ki1 < l m a x  < 3K;l. Secondly, for all other combinations of the para- 
meters considered, the two different initial values of k, d gave two different values of 
1,ax a t  different final values of k, d.  Inspection of the results revealed that if k, d were 
given initially by (4.8), then 1,ax was found to be just greater than K i l .  Similarly, if k ,  
d were given by (4.7) initially, then 1max was found to be just greater than 2Ki1. I n  
both cases the final values of k, d, which gave these maxima for I ,  were found to be close 
to the initial values. This suggests that, for certain values of the parameters, the 
system may be tuned to take power mainly out of the heave motion (Imax 2: K i l )  or 
mainly out of the surge motion (Imax N 2K;l). When only one maximum is obtained 
for I ,  from the two different initial values of k, d,  then power is taken from both heave 
and surge motions and this results in an increased I,,,. The results presented here are 
of the type where 1 has only one maximum; with one exception which is mentioned 
below. 

For the special case of a single-cable mooring and power take-off system (a = 0) i t  
was unnecessary to carry out this numerical maximization procedure for 1 as 

lmnx = Kil,  

at the values of k,, d, given by (5.4), when w = w,. 



726 

\ 

M .  A .  Srokosz 

0.5 1 -0 1.5 2.0 
Ka 

FIGURE 4. Non-dimensional absorption length 1/2a v8. non-dimensional wave number Ka, for the 
submerged sphere with a single-cable power take-off system, with a/h = 8 for different values of 
tuned wavenumber KO a. The dashed curve represents the non-dimensional maximum absorp- 
tion length, 1-/2a. 

0.5 1 -0 1.5 2.0 
Ka 

FIGURE 5. Heave-amplitude ratio IE,/Al v8. non-dimensional wavenumber Ka, for the sub- 
merged sphere with a single-cable power take-off system, for different values of tuned wave- 
number KO a -, a/h = +; ---, a/h = +. 
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0-5 1 .o 1.5 2.0 
Ka 

FIGURE 6 .  Surge amplitude ratio 1&/AI 218. non-dimensional wavenumber Ka, for the submerged 
sphere with ti single-cable power take-off system. -, a/h = 6; ---, a/h = 3. 

With the above information it was possible to evaluate 1 for different values of KO a, 
alh, a and for a range of values of Ka. Values of [c j /Al ,  f o r j  = 1,2 ,  were also calcu- 
lated and the results give some indication as to the validity of using linearized water 
wave theory to model this system. Note that the non-dimensional values 1/2a and 
]&/A1 are plotted against Ka, for differing values ofa ,  a/h,  Koa,  in each figure. 

6.1. Single-cable mooring and power take-off (Jisures 3-6) 

In figure 3, where a /h  = 8 ,  it can be seen that 1/2a achieves its maximum value of 
(2Ka)-l at the relevant values of Koa. This is also true for the results given in figure 4, 
where a/h = 6 from both figures it is clear that the maximum valueof 1/2aonanygiven 
curve is not at  the tuned non-dimensional wavenumber KO a. This phenomenon may 
be explained by considering the curves of lmaX/2a shown in the same figures. Although 
1/2a touches the curve lmax/2a a t  Koa,  higher values of 1/2a can occur; the only 
restriction being that the curves for 1/2a all lie below the curve for lmax/2a and touch 
that curve a t  Koa (see (6.1)). Note that the deeper submergence of the sphere, in the 
case a /h  = 6 (figure 4), results in a narrowing of the curves for 1/2a, although the curve 
for lmax/2a remains unaffected. It is disappointing to note that 1/2a is practically 
always less than one for all the cases considered. This suggests that the single-cable 
mooring and power take-off system does not give good wave-power absorption 
properties for the submerged sphere. 

It would seem possible to make 1/2a > 1 by tuning the system to wavenumbers 
K,a with Koa  < 0.5. However, figure 5 indicates that as Koa  decreases / & / A /  in- 
creases and thus the assumptions of linearized water wave theory are no longer valid. 
This means that the results obtained under these assumptions must be suspect. The 
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0.5 2.0 

FIGURE 7. Non-dimensional absorption length 1/2a us. non-dimensional wavenumber Ka, for the 
submerged sphere with a three-cable power take-off system, with a = 60°, a/h = $, for different 
values of tuned wavenumber Koa. 

I I I 1 
0.5 1 .o 1.5 2.0 

Ka 

FIGURE 8. Non-dimensional absorption length 1/2a us. non-dimensional wavenumber Ka, for the 
submerged sphere with a three-cable power take-off system, with a = 60°, a/h = 8, for different 
values of tuned wavenumber Koa. 
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FIUTJRE 9. Non-dimensional absorption length 1/2a vs. non-dimensional wavenumber Ka, for the 
submerged sphere with a three-cable power-take-off system, with a = 45O, a /h  = #, for different 
values of tuned wavenumber KO a. 

cases considered where KO a = 0.5 and alh  = 8 , $ ,  are probably beyond the limits of the 
validity of linearized theory. From figure 6 it  is clear that the surge motions, which are 
unaffected by the choice of KO a, always lie within the bounds of linearised theory for 
0.1 < Ka < 2. 

6.2.  Three-cable mooring and power take-off (figures 7-15) 

In figures 7-10 curves of 1/2a against Ka, for various values of a, a l h  and Koa, are 
given. All the curves shown, except one, are such that the tuned maximum achieved 
at KO a is of the type where both initial values for k, d gave the same value for on 
use of the numerical maximization procedure (see above). The exception is the curve 
for Koa = 0.5 in figure 10 which is obtained by tuning the system to the maximum 
obtained from the initial values of k ,  d given by (4.7).  In  this case the two different 
initial values of k, d give differing maxima for 1, and the system is tuned to the maximum 
for which most of the power is coming from the surge motions. 

The results shown are for the range of parameters a, alh,  Koa for which the best 
results for the absorption length were obtained. As in the case of a single-cable mooring 
and power take-off system, in figures 7-10 1/2a achieves 1max/2a at the tuned wave- 
number Koa and there are also higher values of 1/2a on each curve. The explanation 
for this is exactly the same as for the single-cable case, only now it is not possible to 
give an explicit equation for the curve 1max/2a beneath which the curves for 1/2a lie. 
Close inspection of the results reveals that, for given alh,  Koa, if a = 60' there is a 
slightly greater range of Ka for which 1/2a is greater than one than in the case a = 45'. 
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Ka 

FIUURE 10. Non-dimensional absorption length 1/2a vs. non-dimensional wavenumber Ka, for the 
submerged sphere with a three-cable power take-off system, with a = 45O, a/h = #, for different 
values of tuned wavenumber KO a. 
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FIGURE 11. Heave and surge amplitude ratios v8. non-dimensional wavenumber Ka, for the 
submerged sphere with a three-cable power take-off system, with a = 60°, a/h = 8, for different 
values of tuned wavenumber KO a. -, surge; IEJAl, ------, heave, 1&/Al. 

It can also be seen that, for given a, KO, a an increase in depth from a/h = 8 to alh = 8 
results in a narrowing of the range of Ka for which 1/2a is greater than one. 

While these results look promising a study of figures 11 and 12, which show curves of 
ltj/AI for a/h = 8 ,  8 and a = 60°, suggest that some of the displacements necessary 
to achieve good absorption violate the assumption of small oscillations of the sphere. 
This is especially true when the sphere is tuned to longer waves (K,a = 0.5) and with 
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10 

Kll 

FIGURE 12. Heave and surge amplitude ratios ws. non-dimensional wavenumber Ka, for the sub- 
merged sphere with a three-cable power take-off system, with a = 60°, a /h  = 8, for different 
values of tuned wavenumber KO a. -, surge, IE,/Al, ---, heave, ll,/AI. 

increasing depth of submergence. However, in all cases the results remain valid for a 
considerable range of Ka, for given a, alh and K,a. Values of ]&/A]  were also calcu- 
lated for the case a = 45’ and showed similar trends. 

From the above results it seems clear that a submerged sphere, with a three-cable 
mooring and power take-off system, can be a good absorber of wave power. That is, it  
can absorb power from a crest length of incident wave which is greater than the 
diameter of the sphere. This is a considerable improvement on the results obtained by 
Evans (1976) for a sphere heaving on the free surface and is due to two factors. Firstly, 
the submerged sphere moves in both surge and heave and power is extracted from both 
modes. This is in contrast to the surface sphere which was only allowed to heave. Thus 
the power absorbed is increased. Secondly, there are no buoyancy restoring forces 
acting on the sphere, thus enabling it to be tuned to longer waves resulting in an 
increase in the power absorbed. In  the case of the heaving surface sphere the ‘built-in’ 
spring due to buoyancy restoring forces prevents it being tuned to longer waves (see 
Evans 1976, $7). The results also show that for some of the situations considered linear 
theory is not valid and nonlinear effects need to be included in the formulation. These 
effects could lead to a reduction in the power absorbed by the sphere. 

I t  is important to note in a realistic situation power would probably be absorbed from 
an incident wave by an array of devices, rather than by a single device as considered 
here. In such a situation the interaction effects between the devices could affect the 
power absorbed by the array. However, the results presented in this paper show that 
gaps between neighbouring devices do not necessarily mean that power will ‘leak’ 
through them as each device may absorb power from a crest length of incident wave 
greater than its own dimensions. Finally it must be said that although the idea of 
power take-off and mooring through the system described in this paper is attractive, 
there may be engineering difficulties in actually realising such a system in practice. 
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(b)  Added-mass and damping coeficients for a submerged sphere 
7. Statement of problem and method of solution 

In  order to calculate the added-mass and damping coefficients for a Submerged 
sphere it is necessary to solve the radiation problem for q5j (j = 1,2,3) .  Due to the 
symmetry of the sphere it is only necessary to solve the radiation problems for a 
surging ( j  = 1) and a heaving (j  = 2) sphere. The solution for a swaying sphere ( j  = 3) 
may be obtained by rotating the solution for a surging sphere through 90' about the 
vertical axis. 

Define R, T ,  8, $ as follows 

R = (z2+z2)*, r = (RZ+(y-h)P)i,} 
tan 8 = R / ( y  - h), tan @ = z/x. 

The radiation potential Re {q5j eiUt> ( j  = 1 , 2) satisfies Laplace's equation (2.1) in the 
fluid, the free surface condition (2.2), and (2.3). Equation (2.9) leads to, on use of (7.1) 

where, following Thorne (1953), 

It is also necessary to impose the condition that there are only outgoing waves as 
R-t  00, that is, 

"(aR S + ~ K + ~  ) -+o as R + ~ O  for j =  1,2. (7.4) 

The method of solution is that used by Ursell (1950) to solve the problem of the 
scattering of an incident wave by a submerged circular cylinder. He placed an infinite 
series of multipole potentials, of unknown strengths, at the centre of the cylinder. Then 
by satisfying the boundary conditions on the cylinder he obtained an infinite system of 
linear simultaneous equations for the strengths of the multipoles. The same method of 
solution was used by Ogilvie (1963) who generalised Ursell's results by considering an 
oscillating cylinder. 

In  this paper use is made of the three dimensional multipole potentials, obtained by 
Thorne (1953), to solve the radiation problems for the sphere. The general three- 
dimensional multipole potential given by Thorne (1953) is (for m < n; m = 0,1 ,  ...) 

- 2ni ( -  ( n - m ) !  1 p + n  Kn+le-K(v+h)Jm(KR)) sin cOsm@, (7.5) 

where the bar across the integral sign denotes a principal value integral. For 

r < 2h' < 2h, 
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q5mn may be expanded as 

where 

0, = 27r( - l)"+S Kn+s+le-2Kh. 
(m+s) !  (n-m)!  

(7.7) 

(7.9) 

Here the multipole potential dmn has been written in complex form rather than the 
real form given by Thorne and his y, z, a become z, y, $, respectively, in the notation of 
this paper. The potential #mn satisfies Laplace's equation (2.1) in the fluid, the free 
surface condition (2.2), equation (2.3) and the radiation condition (7.4). 

From the boundary condition on the sphere (7.2) it is clear that q51 need only be 
expressed as a sum of multipoles for m = 1, with a simple cos 4 dependence. Similarly, 
from (7.3), #2 may be expressed as a sum of multipoles for m = 0, independent of $. 
In §$8 and 9 below the solutions for d1 and cZ respectively are given. 

8. The surging sphere 
Write #, as the following sum of multipole potentials with unknown strengths q,, 

* qnan+2 P', (cos 0) ( -  1)n 
c1= n=l  c -{ (n+l )  rn+l +-!fa (n- 1 )  

K+k K - k  kne-k(~+h)Jl(kR) dk 

K"+le-K(~+h)Jl(KR) I cos $. (8.1) 
27ri( - 1)"+1 

(n - 1 )  ! 
- 

From (7.6)-( 7 .8) ,  el may be expanded, for r < 2h' < 2h, as 

From (7.9) and (8. l ) ,  as R --f co 

where 
q51 N A, e--gVH(:)( K R )  cos 9, 

To determine the q, differentiate (8.2) with respect to r and apply the boundary 
condition (7.2) to obtain 
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As the P&(cos 0 )  are orthogonal equate coefficients of PhL(cos 0 )  to obtain 

This is an infinite system of linear simultaneous equations for an infinite number of 
unknowns. It can be solved numerically by truncating the system to a finite number of 
terms; this method of solution is discussed in 8 10. 

In  general the added-mass and damping coefficients, denoted by a,, and bi, res- 
pectively, are given by 

02ai,-iobij = -POPS # -dS W i  for i,j = 1, ..., 6. 
3an 

For the submerged sphere, i,j = 1 , 2 , 3  and a,, = 0, b,, = 0 for i $: j by symmetry. Also 
a,, = a,, and b,, = b,, again by symmetry. Now 

on use of (7 .2 ) .  From (8 .2 )  and (8.6) 4, may be written as 

and 

By an application of Green's theorem it is possible to show that (cf. Newman, 1976, 
equation (31 b ) )  

This relation can be used to check the consistency of the numerical results obtained 
from solving (8.6). 

b,, = pWK-11A112. (8.8) 

9. The heaving sphere 
The analysis follows that of $8. Write #2 as 

kne-k(u+h)J,(kR) dk 

Kn+le--R(Y+h)Jo(KR) 
2ni(  - 1)" - 

n !  
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Note that it is possible to take the summation from n = 0 to KI and so include the 
multipole potential with a r--1 singularity at the centre of the sphere. However, when 
the boundary condition (7 .3)  is applied it is found that the coefficient p o  is zero. Physi- 
cally this corresponds to requiring that, a t  any instant of time, there is no flux of fluid 
across the boundary of the sphere because it is a rigid body. If the sphere was pulsa- 
ting say, that is if it  were not a rigid body, then the r-1 singularity would be required to 
obtaifi a solution. This problem does not arise for a surging sphere as there the solution 
depends on P$(cos 8) and n must be greater than or equal to 1 ,  thus excluding the r-l 
singularity. For r < 2h' < 2h, 

where 

(Ka)n+l( - i )n+ l  
A ,  = 4 n i ~ e - = ~  2 Pn. 

n= 1 ( n + 1 ) !  

Differentiating 4, with respect to r and using boundary conditions (7 .3 )  gives 

m mam+n+l 

sm1 = - ~ m +  Anm ( n + l )  p n  for m = 1 ,2 ,  ... . 
n = l  

The added-mass and damping coefficients for the heaving submerged sphere are 
given by 

w2a,, - id2, = - pw2a2 s,"" l: 
where use has been made of (9 .2) ,  (9 .6)  and 

p,(cos 8)  sin 8 ded+, 

= - [+3pw21 . (gpl + 1 1, 

J0"[pn (cos8)12sin0d0 = 2(2n+ 1)-1 ,  

l0"~,(cos 0) en(cos 8)  sin ode  = 0 for m + n. 

An application of Green's theorem gives 

b,, = + p ~ K - ' l A , 1 ~ .  

(9 .7)  

10. Solution of the systems of linear simultaneous equations 
From the results given in $9 8 and 9 it can be seen that all that is required for a full 

solution to the problem of a surging, heaving or swaying sphere are the coefficients 
p, ,  qn. These may be determined from a numerical solution of the systems of linear 
simultaneous equations given by (8 .6 )  and (9 .6) .  In  order to simplify the numerical 
work involved the systems of equations (8 .6 )  and (9 .6 )  may be decomposed into 
equivalent real systems. In  this way the real and imaginary parts p,, qn may be more 
easily calculated. This is done in the following manner. 
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Write pn, qn as 

I (10.1) 

where a,, b,, c,, dn are all real. Thus by taking the real and imaginary parts of (8.6), 
(9.6) and using (10.1) 

* m  27re-=h(Ka)2m+l 
= am+nZlm+ - 1 (anan,- m ! n !  

( - Ka),+l 
- Srn, 

~ i ( x )  = f" t-letdt. 
- W  

Now define S,, Z,, em, y,, q,, urn (all real) to be such that 

I 

Now using (10.2)-( 10.6) it is possible to express a,, b,, c,, d ,  

U,  = S , E ~ - ~ ( K U ) ~ Y , ,  
C, = Z,CT,-Q(KU)~~,, 

b, = -Sac,, 
d, = -Z,a, .  

(10.4) 

(10.5) 

(10.6) 

(10.7) 
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Furthermore 
S,  = - i(Ka)W,( 1 + 
S, = i (Ka)2S,  S,( 1 +AS',")-', 

2, = - +(Ka)ZZ,( 1 + Z:)-l, 
2, = p(Ka)2Z, Z,( 1 + Z?)-l. 

Using the above results equations ( 8 4 ,  (9.5) may be written as 

Az /a  = - eKh(Ka)W,(X, + i) (1  + 
A,/a = +eKh(Ka)ZZ,(Z, + i) ( 1  + Z:)-l 

also, equations (8.7), (9.7) give 

(10.8) 

(10.9) 

(10.10) 

(10.11) 

'1 
A,, = $Sr el( 1 + s y ,  (l  +sa)-'71 

p,, = &, - 1 - $2, 2, cT1( 1 + z y  
A,, = #ZT (TI( 1 + z:y, 
Yzz = 8Y1- 1 - W , S €  1 

where pjj and A, are the non-dimensionalized added-mass and damping coefficients 
given by 

,uj, = ai,(3ra3p)-l, A, = bjj(+na3pw)-l, for j = 1,2,3. (10.12) 

In the above, the two complex systems (8.6) and (9.6) have been reduced to four 
real systems (10.5), (10.6) which are easier to evaluate numerically on a computer. 
Furthermore it has been shown how the added mass and damping coefficients and the 
amplitudes of the waves at R = 03 can be expressed in terms of the solutions to the real 
systems (10.5), (10.6). 

The four systems ( 1 0 4 ,  (10.6) were solved numerically by truncating the infinite 
system to a finite number of equations and unknowns. The finite systems were then 
solved by using a standard computer procedure for the numerical solution of a system 
of real, linear, simultaneous equations. Solutions were computed successively with 10, 
15, 20 terms taken into account. The results for the added-mass and damping coeffi- 
cients and the wave amplitudes were found to agree to four or five significant figures in 
general. It was found that for Ka < 0.1 and a/h >, 0.8 agreement was less good; 
though by decreasing a/h the agreement between solutions with 10, 15, 20 terms was 
good for Ka down to 0.05. The relations (8.8), (9.8) were also used as a check on the 
calculations, by comparing results from (10.10) and (10.11) for All, and AZ2 with those 
obtained by using (8.8), (9.8), (10.9) and (10.12). Again agreement was found to four 
or five significant figures. The results obtained for the added-mass and damping 
coefficients are presented and discussed below. 

11. Results and discussion for the added-mass and damping coefficients of 
the sphere 

Using the results of 3 10 calculations were carried out for pjj, A,, ( j  = 1,2) for the 
following range of parameters 
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FIGURE 13. Non-dimensional damping coefficient A,, vs. non-dimensional wavenumber Ka, for a 
heaving submerged sphere, for different values of a/h. 
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FIQ~RE 14. Non-dimensional damping coefficient A,, vs. non-dimensional wavenumber Ku, for a 
surging submerged sphere, for different values of a/h. 

where alh is the non-dimensional submergence parameter and Ka is the non-dimen- 
sional wavenumber. Note that a/h < 1 and for a deeply submerged sphere a/h+ 0. 
Curves of pii, Ajj are given in figures 13-1 6. 

Figures 13 and 14 show A,, andh,,, respectively, plotted against Kafor varying values 
of a/h. It can be seen that as alh  decreases, that is, as the sphere becomes more deeply 
submerged, the damping coefficient also decreases. This is not surprising as the damp- 
ing coefficient and the waves radiated to infinity are related [see equations (8.8) and 
(9.8)]. So if the depth of submergence of the sphere is increased it is to be expected that 
the amplitude of the waves generated will decrease and thus the damping coefficient 
will decrease. Note that there is a factor of two difference in the scales marked on 
figures 13 and 14, showing that the damping coefficient for a surging sphere is generally 
smaller than that for a heaving sphere. 

In  figures 15 and 16 curves are given for p,, and pI1, respectively. Here as the depth 
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FIGURE 15. Non-dimensional added-mass coefficient pzr va. non-dimensional wavenumber Ka, 

for a heaving submerged sphere, for different values of a/h. 
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FramE 16. Non-dimensional added-mass coefficient pl1 va. non-dimensional wavenumber Ka, 
for a surging submerged sphere, for different values of a/h. 

of submergence is increased (a/h-+ 0) both pzz and pl l  approach the value of a half. 
This is to be expected as the non-dimensional added-mass of a sphere oscillating in an 
infinite fluid with no free surface take the value one half (see Newman 1977, p. 144, 
equation 134). As the sphere becomes deeply submerged the effect of the free surface is 
minimal, and so the sphere can be considered to be moving in an infinite fluid. Note 
that when the sphere is closer to the free surface pz2 deviates more from the value of 
one half than pI1. 

If the case of a sphere oscillating in an infinite fluid, with no free surface, is considered 
as the limiting case of the submerged sphere, when its depth of submergence becomes 
large, then the following explanation of the difference between the results for heave 
and surge is plausible. When the submerged sphere is heaving its highest point is 
forced nearer the undisturbed free surface than when it is surging. In  surge the sphere's 
motion is parallel to the undisturbed free surface and the highest point of the sphere is 

25-2 
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always the same distance from it. So it may be argued that the heaving sphere ‘inter- 
acts’ more strongly with the free surface than the surging sphere. Thus a larger devia- 
tion from the results for limiting case of a sphere oscillating in an infinite fluid occurs 
when the sphere heaves. (Note that the damping coefficient for a sphere in an infinite 
fluid, with no free surface, is zero.) 

Finally, as stated in 0 8, the results for the non-dimensional added-mass and damp- 
ing of a swaying submerged sphere are identical to those for a surging submerged 
sphere, by symmetry. Thus A,, and ,uS3 are the same as A,, and ,ull in figures 14 and 16, 
respectively. 

12. Conclusion 
In  part (a) of this paper a linearized theory has been presented for the absorption of 

wave power by a submerged sphere. This analysis included the effects of a possible 
mooring and power take-off system for the sphere. The differences between a single- 
cable and a three-cable system have been examined. It has been shown that the three- 
cable system allows the sphere to absorb power from a crest length of incident wave 
greater than its diameter. For a single-cable system it does not seem possible to 
achieve this result. Curves of the absorption length for both mooring and power take- 
off systems have been given, showing how the absorption length varies with changes of 
tuned wavenumber, depth of submergence and the wavenumber of the incident wave. 
These results suggest that the submerged sphere could be a good wave-power absorber 
for certain values of the parameters. However, the results also show that, for other 
values of the parameters, the linearized theory used is inappropriate and a nonlinear 
theory is necessary to describe the motion of the sphere. Finally, part (a )  shows that 
the submerged sphere compares favourably with the floating sphere (see Evans 1976) 
as a wave-power absorber. 

Part ( b )  of the paper concentrated on the solution of the radiation problems, for the 
forced motion of a sphere in heave or surge. The results for the added-mass and damp- 
ing coefficients were derived and used in part (a)  to calculate the absorption length and 
other properties of the sphere acting as an absorber of wave power. The method of 
solution used, that is the multipole potential method, is only applicable for certain 
body shapes and is not generally useful in solving similar problems. However, in the 
case of a submerged sphere it is probably the most straightforward method of solution. 

It is hoped to extend these results to the case of two or more adjacent spheres 
acting as wave-power absorbers. This would obviously be a better representation of 
how wave power absorbers are likely to be moored at  sea. That is, not individual 
devices spaced out at large distance, and thus effectively independent in their opera- 
tion, but arrays of devices in reasonably close proximity. In  such arrays the motion of 
one device could significantly affect the wave-power absorption properties of another 
device nearby. 

I should like to thank Dr D. V. Evans for many useful discussions during the prep- 
aration of this paper, and the Science Research Council for providing the financial 
support which made this research possible. 
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